This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs2dif2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | abstri | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + - 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ - 𝐵 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + - 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ - 𝐵 ) ) ) |
| 4 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 5 | 4 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + - 𝐵 ) ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 6 | absneg | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ - 𝐵 ) = ( abs ‘ 𝐵 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ - 𝐵 ) = ( abs ‘ 𝐵 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) + ( abs ‘ - 𝐵 ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |
| 9 | 3 5 8 | 3brtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |