This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recan | |- ( ( A e. CC /\ B e. CC ) -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | fvoveq1 | |- ( x = 1 -> ( Re ` ( x x. A ) ) = ( Re ` ( 1 x. A ) ) ) |
|
| 3 | fvoveq1 | |- ( x = 1 -> ( Re ` ( x x. B ) ) = ( Re ` ( 1 x. B ) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( x = 1 -> ( ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) ) |
| 5 | 4 | rspcv | |- ( 1 e. CC -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) ) |
| 6 | 1 5 | ax-mp | |- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( 1 x. A ) ) = ( Re ` ( 1 x. B ) ) ) |
| 7 | negicn | |- -u _i e. CC |
|
| 8 | fvoveq1 | |- ( x = -u _i -> ( Re ` ( x x. A ) ) = ( Re ` ( -u _i x. A ) ) ) |
|
| 9 | fvoveq1 | |- ( x = -u _i -> ( Re ` ( x x. B ) ) = ( Re ` ( -u _i x. B ) ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( x = -u _i -> ( ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) ) |
| 11 | 10 | rspcv | |- ( -u _i e. CC -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) ) |
| 12 | 7 11 | ax-mp | |- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( Re ` ( -u _i x. A ) ) = ( Re ` ( -u _i x. B ) ) ) |
| 13 | 12 | oveq2d | |- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( _i x. ( Re ` ( -u _i x. A ) ) ) = ( _i x. ( Re ` ( -u _i x. B ) ) ) ) |
| 14 | 6 13 | oveq12d | |- ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) |
| 15 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 16 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 17 | 16 | eqcomd | |- ( A e. CC -> A = ( 1 x. A ) ) |
| 18 | 17 | fveq2d | |- ( A e. CC -> ( Re ` A ) = ( Re ` ( 1 x. A ) ) ) |
| 19 | imre | |- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) |
|
| 20 | 19 | oveq2d | |- ( A e. CC -> ( _i x. ( Im ` A ) ) = ( _i x. ( Re ` ( -u _i x. A ) ) ) ) |
| 21 | 18 20 | oveq12d | |- ( A e. CC -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) ) |
| 22 | 15 21 | eqtrd | |- ( A e. CC -> A = ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) ) |
| 23 | replim | |- ( B e. CC -> B = ( ( Re ` B ) + ( _i x. ( Im ` B ) ) ) ) |
|
| 24 | mullid | |- ( B e. CC -> ( 1 x. B ) = B ) |
|
| 25 | 24 | eqcomd | |- ( B e. CC -> B = ( 1 x. B ) ) |
| 26 | 25 | fveq2d | |- ( B e. CC -> ( Re ` B ) = ( Re ` ( 1 x. B ) ) ) |
| 27 | imre | |- ( B e. CC -> ( Im ` B ) = ( Re ` ( -u _i x. B ) ) ) |
|
| 28 | 27 | oveq2d | |- ( B e. CC -> ( _i x. ( Im ` B ) ) = ( _i x. ( Re ` ( -u _i x. B ) ) ) ) |
| 29 | 26 28 | oveq12d | |- ( B e. CC -> ( ( Re ` B ) + ( _i x. ( Im ` B ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) |
| 30 | 23 29 | eqtrd | |- ( B e. CC -> B = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) |
| 31 | 22 30 | eqeqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( A = B <-> ( ( Re ` ( 1 x. A ) ) + ( _i x. ( Re ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( 1 x. B ) ) + ( _i x. ( Re ` ( -u _i x. B ) ) ) ) ) ) |
| 32 | 14 31 | imbitrrid | |- ( ( A e. CC /\ B e. CC ) -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) -> A = B ) ) |
| 33 | oveq2 | |- ( A = B -> ( x x. A ) = ( x x. B ) ) |
|
| 34 | 33 | fveq2d | |- ( A = B -> ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) ) |
| 35 | 34 | ralrimivw | |- ( A = B -> A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) ) |
| 36 | 32 35 | impbid1 | |- ( ( A e. CC /\ B e. CC ) -> ( A. x e. CC ( Re ` ( x x. A ) ) = ( Re ` ( x x. B ) ) <-> A = B ) ) |