This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. ( pnpcan analog.) (Contributed by NM, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | |- B = ( Base ` G ) |
|
| ablsubadd.p | |- .+ = ( +g ` G ) |
||
| ablsubadd.m | |- .- = ( -g ` G ) |
||
| ablsubsub.g | |- ( ph -> G e. Abel ) |
||
| ablsubsub.x | |- ( ph -> X e. B ) |
||
| ablsubsub.y | |- ( ph -> Y e. B ) |
||
| ablsubsub.z | |- ( ph -> Z e. B ) |
||
| ablpnpcan.g | |- ( ph -> G e. Abel ) |
||
| ablpnpcan.x | |- ( ph -> X e. B ) |
||
| ablpnpcan.y | |- ( ph -> Y e. B ) |
||
| ablpnpcan.z | |- ( ph -> Z e. B ) |
||
| Assertion | ablpnpcan | |- ( ph -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( Y .- Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | |- B = ( Base ` G ) |
|
| 2 | ablsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | ablsubsub.g | |- ( ph -> G e. Abel ) |
|
| 5 | ablsubsub.x | |- ( ph -> X e. B ) |
|
| 6 | ablsubsub.y | |- ( ph -> Y e. B ) |
|
| 7 | ablsubsub.z | |- ( ph -> Z e. B ) |
|
| 8 | ablpnpcan.g | |- ( ph -> G e. Abel ) |
|
| 9 | ablpnpcan.x | |- ( ph -> X e. B ) |
|
| 10 | ablpnpcan.y | |- ( ph -> Y e. B ) |
|
| 11 | ablpnpcan.z | |- ( ph -> Z e. B ) |
|
| 12 | 1 2 3 | ablsub4 | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( X e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( ( X .- X ) .+ ( Y .- Z ) ) ) |
| 13 | 4 5 6 5 7 12 | syl122anc | |- ( ph -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( ( X .- X ) .+ ( Y .- Z ) ) ) |
| 14 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 15 | 4 14 | syl | |- ( ph -> G e. Grp ) |
| 16 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 17 | 1 16 3 | grpsubid | |- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( 0g ` G ) ) |
| 18 | 15 5 17 | syl2anc | |- ( ph -> ( X .- X ) = ( 0g ` G ) ) |
| 19 | 18 | oveq1d | |- ( ph -> ( ( X .- X ) .+ ( Y .- Z ) ) = ( ( 0g ` G ) .+ ( Y .- Z ) ) ) |
| 20 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) e. B ) |
| 21 | 15 6 7 20 | syl3anc | |- ( ph -> ( Y .- Z ) e. B ) |
| 22 | 1 2 16 | grplid | |- ( ( G e. Grp /\ ( Y .- Z ) e. B ) -> ( ( 0g ` G ) .+ ( Y .- Z ) ) = ( Y .- Z ) ) |
| 23 | 15 21 22 | syl2anc | |- ( ph -> ( ( 0g ` G ) .+ ( Y .- Z ) ) = ( Y .- Z ) ) |
| 24 | 13 19 23 | 3eqtrd | |- ( ph -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( Y .- Z ) ) |