This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. ( pnpcan analog.) (Contributed by NM, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ablsubsub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| ablsubsub.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ablsubsub.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ablsubsub.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| ablpnpcan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| ablpnpcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ablpnpcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ablpnpcan.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ablpnpcan | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) − ( 𝑋 + 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ablsubsub.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | ablsubsub.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ablsubsub.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ablsubsub.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | ablpnpcan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 9 | ablpnpcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 10 | ablpnpcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 11 | ablpnpcan.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 12 | 1 2 3 | ablsub4 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − ( 𝑋 + 𝑍 ) ) = ( ( 𝑋 − 𝑋 ) + ( 𝑌 − 𝑍 ) ) ) |
| 13 | 4 5 6 5 7 12 | syl122anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) − ( 𝑋 + 𝑍 ) ) = ( ( 𝑋 − 𝑋 ) + ( 𝑌 − 𝑍 ) ) ) |
| 14 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 17 | 1 16 3 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 18 | 15 5 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 19 | 18 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑋 ) + ( 𝑌 − 𝑍 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑌 − 𝑍 ) ) ) |
| 20 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 21 | 15 6 7 20 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 22 | 1 2 16 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑌 − 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
| 23 | 15 21 22 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ‘ 𝐺 ) + ( 𝑌 − 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
| 24 | 13 19 23 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) − ( 𝑋 + 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |