This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( nncan analog.) (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablnncan.b | |- B = ( Base ` G ) |
|
| ablnncan.m | |- .- = ( -g ` G ) |
||
| ablnncan.g | |- ( ph -> G e. Abel ) |
||
| ablnncan.x | |- ( ph -> X e. B ) |
||
| ablnncan.y | |- ( ph -> Y e. B ) |
||
| Assertion | ablnncan | |- ( ph -> ( X .- ( X .- Y ) ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | |- B = ( Base ` G ) |
|
| 2 | ablnncan.m | |- .- = ( -g ` G ) |
|
| 3 | ablnncan.g | |- ( ph -> G e. Abel ) |
|
| 4 | ablnncan.x | |- ( ph -> X e. B ) |
|
| 5 | ablnncan.y | |- ( ph -> Y e. B ) |
|
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 2 3 4 4 5 | ablsubsub | |- ( ph -> ( X .- ( X .- Y ) ) = ( ( X .- X ) ( +g ` G ) Y ) ) |
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | 3 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 11 | 1 10 2 | grpsubid | |- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( 0g ` G ) ) |
| 12 | 9 4 11 | syl2anc | |- ( ph -> ( X .- X ) = ( 0g ` G ) ) |
| 13 | 12 | oveq1d | |- ( ph -> ( ( X .- X ) ( +g ` G ) Y ) = ( ( 0g ` G ) ( +g ` G ) Y ) ) |
| 14 | 1 6 10 | grplid | |- ( ( G e. Grp /\ Y e. B ) -> ( ( 0g ` G ) ( +g ` G ) Y ) = Y ) |
| 15 | 9 5 14 | syl2anc | |- ( ph -> ( ( 0g ` G ) ( +g ` G ) Y ) = Y ) |
| 16 | 7 13 15 | 3eqtrd | |- ( ph -> ( X .- ( X .- Y ) ) = Y ) |