This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | |- X = ran G |
|
| abldiv.3 | |- D = ( /g ` G ) |
||
| Assertion | ablodiv32 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D C ) D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | |- X = ran G |
|
| 2 | abldiv.3 | |- D = ( /g ` G ) |
|
| 3 | 1 | ablocom | |- ( ( G e. AbelOp /\ B e. X /\ C e. X ) -> ( B G C ) = ( C G B ) ) |
| 4 | 3 | 3adant3r1 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B G C ) = ( C G B ) ) |
| 5 | 4 | oveq2d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B G C ) ) = ( A D ( C G B ) ) ) |
| 6 | 1 2 | ablodivdiv4 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( A D ( B G C ) ) ) |
| 7 | 3ancomb | |- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) |
|
| 8 | 1 2 | ablodivdiv4 | |- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A D C ) D B ) = ( A D ( C G B ) ) ) |
| 9 | 7 8 | sylan2b | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) D B ) = ( A D ( C G B ) ) ) |
| 10 | 5 6 9 | 3eqtr4d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D C ) D B ) ) |