This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | |- X = ran G |
|
| grpdivf.3 | |- D = ( /g ` G ) |
||
| Assertion | grpodivdiv | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | |- X = ran G |
|
| 2 | grpdivf.3 | |- D = ( /g ` G ) |
|
| 3 | simpl | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
|
| 4 | simpr1 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 5 | 1 2 | grpodivcl | |- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D C ) e. X ) |
| 6 | 5 | 3adant3r1 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) e. X ) |
| 7 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 8 | 1 7 2 | grpodivval | |- ( ( G e. GrpOp /\ A e. X /\ ( B D C ) e. X ) -> ( A D ( B D C ) ) = ( A G ( ( inv ` G ) ` ( B D C ) ) ) ) |
| 9 | 3 4 6 8 | syl3anc | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( ( inv ` G ) ` ( B D C ) ) ) ) |
| 10 | 1 7 2 | grpoinvdiv | |- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( ( inv ` G ) ` ( B D C ) ) = ( C D B ) ) |
| 11 | 10 | 3adant3r1 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` ( B D C ) ) = ( C D B ) ) |
| 12 | 11 | oveq2d | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( ( inv ` G ) ` ( B D C ) ) ) = ( A G ( C D B ) ) ) |
| 13 | 9 12 | eqtrd | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |