This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( nnncan1 analog.) (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablnncan.b | |- B = ( Base ` G ) |
|
| ablnncan.m | |- .- = ( -g ` G ) |
||
| ablnncan.g | |- ( ph -> G e. Abel ) |
||
| ablnncan.x | |- ( ph -> X e. B ) |
||
| ablnncan.y | |- ( ph -> Y e. B ) |
||
| ablsub32.z | |- ( ph -> Z e. B ) |
||
| Assertion | ablnnncan1 | |- ( ph -> ( ( X .- Y ) .- ( X .- Z ) ) = ( Z .- Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | |- B = ( Base ` G ) |
|
| 2 | ablnncan.m | |- .- = ( -g ` G ) |
|
| 3 | ablnncan.g | |- ( ph -> G e. Abel ) |
|
| 4 | ablnncan.x | |- ( ph -> X e. B ) |
|
| 5 | ablnncan.y | |- ( ph -> Y e. B ) |
|
| 6 | ablsub32.z | |- ( ph -> Z e. B ) |
|
| 7 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 8 | 3 7 | syl | |- ( ph -> G e. Grp ) |
| 9 | 1 2 | grpsubcl | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( X .- Z ) e. B ) |
| 10 | 8 4 6 9 | syl3anc | |- ( ph -> ( X .- Z ) e. B ) |
| 11 | 1 2 3 4 5 10 | ablsub32 | |- ( ph -> ( ( X .- Y ) .- ( X .- Z ) ) = ( ( X .- ( X .- Z ) ) .- Y ) ) |
| 12 | 1 2 3 4 6 | ablnncan | |- ( ph -> ( X .- ( X .- Z ) ) = Z ) |
| 13 | 12 | oveq1d | |- ( ph -> ( ( X .- ( X .- Z ) ) .- Y ) = ( Z .- Y ) ) |
| 14 | 11 13 | eqtrd | |- ( ph -> ( ( X .- Y ) .- ( X .- Z ) ) = ( Z .- Y ) ) |