This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablnncan.b | |- B = ( Base ` G ) |
|
| ablnncan.m | |- .- = ( -g ` G ) |
||
| ablnncan.g | |- ( ph -> G e. Abel ) |
||
| ablnncan.x | |- ( ph -> X e. B ) |
||
| ablnncan.y | |- ( ph -> Y e. B ) |
||
| ablsub32.z | |- ( ph -> Z e. B ) |
||
| Assertion | ablsub32 | |- ( ph -> ( ( X .- Y ) .- Z ) = ( ( X .- Z ) .- Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | |- B = ( Base ` G ) |
|
| 2 | ablnncan.m | |- .- = ( -g ` G ) |
|
| 3 | ablnncan.g | |- ( ph -> G e. Abel ) |
|
| 4 | ablnncan.x | |- ( ph -> X e. B ) |
|
| 5 | ablnncan.y | |- ( ph -> Y e. B ) |
|
| 6 | ablsub32.z | |- ( ph -> Z e. B ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | 1 7 | ablcom | |- ( ( G e. Abel /\ Y e. B /\ Z e. B ) -> ( Y ( +g ` G ) Z ) = ( Z ( +g ` G ) Y ) ) |
| 9 | 3 5 6 8 | syl3anc | |- ( ph -> ( Y ( +g ` G ) Z ) = ( Z ( +g ` G ) Y ) ) |
| 10 | 9 | oveq2d | |- ( ph -> ( X .- ( Y ( +g ` G ) Z ) ) = ( X .- ( Z ( +g ` G ) Y ) ) ) |
| 11 | 1 7 2 3 4 5 6 | ablsubsub4 | |- ( ph -> ( ( X .- Y ) .- Z ) = ( X .- ( Y ( +g ` G ) Z ) ) ) |
| 12 | 1 7 2 3 4 6 5 | ablsubsub4 | |- ( ph -> ( ( X .- Z ) .- Y ) = ( X .- ( Z ( +g ` G ) Y ) ) ) |
| 13 | 10 11 12 | 3eqtr4d | |- ( ph -> ( ( X .- Y ) .- Z ) = ( ( X .- Z ) .- Y ) ) |