This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( nnncan analog.) (Contributed by NM, 29-Feb-2008) (Revised by AV, 27-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablnncan.b | |- B = ( Base ` G ) |
|
| ablnncan.m | |- .- = ( -g ` G ) |
||
| ablnncan.g | |- ( ph -> G e. Abel ) |
||
| ablnncan.x | |- ( ph -> X e. B ) |
||
| ablnncan.y | |- ( ph -> Y e. B ) |
||
| ablsub32.z | |- ( ph -> Z e. B ) |
||
| Assertion | ablnnncan | |- ( ph -> ( ( X .- ( Y .- Z ) ) .- Z ) = ( X .- Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | |- B = ( Base ` G ) |
|
| 2 | ablnncan.m | |- .- = ( -g ` G ) |
|
| 3 | ablnncan.g | |- ( ph -> G e. Abel ) |
|
| 4 | ablnncan.x | |- ( ph -> X e. B ) |
|
| 5 | ablnncan.y | |- ( ph -> Y e. B ) |
|
| 6 | ablsub32.z | |- ( ph -> Z e. B ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | 3 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | 1 2 | grpsubcl | |- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) e. B ) |
| 11 | 9 5 6 10 | syl3anc | |- ( ph -> ( Y .- Z ) e. B ) |
| 12 | 1 7 2 3 4 11 6 | ablsubsub4 | |- ( ph -> ( ( X .- ( Y .- Z ) ) .- Z ) = ( X .- ( ( Y .- Z ) ( +g ` G ) Z ) ) ) |
| 13 | 1 7 | ablcom | |- ( ( G e. Abel /\ ( Y .- Z ) e. B /\ Z e. B ) -> ( ( Y .- Z ) ( +g ` G ) Z ) = ( Z ( +g ` G ) ( Y .- Z ) ) ) |
| 14 | 3 11 6 13 | syl3anc | |- ( ph -> ( ( Y .- Z ) ( +g ` G ) Z ) = ( Z ( +g ` G ) ( Y .- Z ) ) ) |
| 15 | 1 7 2 | ablpncan3 | |- ( ( G e. Abel /\ ( Z e. B /\ Y e. B ) ) -> ( Z ( +g ` G ) ( Y .- Z ) ) = Y ) |
| 16 | 3 6 5 15 | syl12anc | |- ( ph -> ( Z ( +g ` G ) ( Y .- Z ) ) = Y ) |
| 17 | 14 16 | eqtrd | |- ( ph -> ( ( Y .- Z ) ( +g ` G ) Z ) = Y ) |
| 18 | 17 | oveq2d | |- ( ph -> ( X .- ( ( Y .- Z ) ( +g ` G ) Z ) ) = ( X .- Y ) ) |
| 19 | 12 18 | eqtrd | |- ( ph -> ( ( X .- ( Y .- Z ) ) .- Z ) = ( X .- Y ) ) |