This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnncan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) - C ) = ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 3 | subsub4 | |- ( ( A e. CC /\ ( B - C ) e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) - C ) = ( A - ( ( B - C ) + C ) ) ) |
|
| 4 | 2 3 | syld3an2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) - C ) = ( A - ( ( B - C ) + C ) ) ) |
| 5 | npcan | |- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
|
| 6 | 5 | oveq2d | |- ( ( B e. CC /\ C e. CC ) -> ( A - ( ( B - C ) + C ) ) = ( A - B ) ) |
| 7 | 6 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( ( B - C ) + C ) ) = ( A - B ) ) |
| 8 | 4 7 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) - C ) = ( A - B ) ) |