This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( nnncan analog.) (Contributed by NM, 29-Feb-2008) (Revised by AV, 27-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablnncan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablnncan.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ablnncan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| ablnncan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ablnncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ablsub32.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ablnnncan | ⊢ ( 𝜑 → ( ( 𝑋 − ( 𝑌 − 𝑍 ) ) − 𝑍 ) = ( 𝑋 − 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablnncan.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | ablnncan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 4 | ablnncan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | ablnncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | ablsub32.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 | 1 2 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 11 | 9 5 6 10 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
| 12 | 1 7 2 3 4 11 6 | ablsubsub4 | ⊢ ( 𝜑 → ( ( 𝑋 − ( 𝑌 − 𝑍 ) ) − 𝑍 ) = ( 𝑋 − ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) ) ) |
| 13 | 1 7 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) ) |
| 14 | 3 11 6 13 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) ) |
| 15 | 1 7 2 | ablpncan3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) = 𝑌 ) |
| 16 | 3 6 5 15 | syl12anc | ⊢ ( 𝜑 → ( 𝑍 ( +g ‘ 𝐺 ) ( 𝑌 − 𝑍 ) ) = 𝑌 ) |
| 17 | 14 16 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) = 𝑌 ) |
| 18 | 17 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 − ( ( 𝑌 − 𝑍 ) ( +g ‘ 𝐺 ) 𝑍 ) ) = ( 𝑋 − 𝑌 ) ) |
| 19 | 12 18 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 − ( 𝑌 − 𝑍 ) ) − 𝑍 ) = ( 𝑋 − 𝑌 ) ) |