This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | |- B = ( Base ` G ) |
|
| ablsubadd.p | |- .+ = ( +g ` G ) |
||
| ablsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | ablpncan3 | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> ( X .+ ( Y .- X ) ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | |- B = ( Base ` G ) |
|
| 2 | ablsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | simpl | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> G e. Abel ) |
|
| 5 | simprl | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 6 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 7 | 6 | adantr | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> G e. Grp ) |
| 8 | simprr | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
|
| 9 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ Y e. B /\ X e. B ) -> ( Y .- X ) e. B ) |
| 10 | 7 8 5 9 | syl3anc | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> ( Y .- X ) e. B ) |
| 11 | 1 2 | ablcom | |- ( ( G e. Abel /\ X e. B /\ ( Y .- X ) e. B ) -> ( X .+ ( Y .- X ) ) = ( ( Y .- X ) .+ X ) ) |
| 12 | 4 5 10 11 | syl3anc | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> ( X .+ ( Y .- X ) ) = ( ( Y .- X ) .+ X ) ) |
| 13 | 1 2 3 | grpnpcan | |- ( ( G e. Grp /\ Y e. B /\ X e. B ) -> ( ( Y .- X ) .+ X ) = Y ) |
| 14 | 7 8 5 13 | syl3anc | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> ( ( Y .- X ) .+ X ) = Y ) |
| 15 | 12 14 | eqtrd | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) ) -> ( X .+ ( Y .- X ) ) = Y ) |