This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for 3wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | |- P = <" A B C D "> |
|
| 3wlkd.f | |- F = <" J K L "> |
||
| 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
||
| Assertion | 3wlkdlem3 | |- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | |- P = <" A B C D "> |
|
| 2 | 3wlkd.f | |- F = <" J K L "> |
|
| 3 | 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
|
| 4 | 1 | fveq1i | |- ( P ` 0 ) = ( <" A B C D "> ` 0 ) |
| 5 | s4fv0 | |- ( A e. V -> ( <" A B C D "> ` 0 ) = A ) |
|
| 6 | 4 5 | eqtrid | |- ( A e. V -> ( P ` 0 ) = A ) |
| 7 | 1 | fveq1i | |- ( P ` 1 ) = ( <" A B C D "> ` 1 ) |
| 8 | s4fv1 | |- ( B e. V -> ( <" A B C D "> ` 1 ) = B ) |
|
| 9 | 7 8 | eqtrid | |- ( B e. V -> ( P ` 1 ) = B ) |
| 10 | 6 9 | anim12i | |- ( ( A e. V /\ B e. V ) -> ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) ) |
| 11 | 1 | fveq1i | |- ( P ` 2 ) = ( <" A B C D "> ` 2 ) |
| 12 | s4fv2 | |- ( C e. V -> ( <" A B C D "> ` 2 ) = C ) |
|
| 13 | 11 12 | eqtrid | |- ( C e. V -> ( P ` 2 ) = C ) |
| 14 | 1 | fveq1i | |- ( P ` 3 ) = ( <" A B C D "> ` 3 ) |
| 15 | s4fv3 | |- ( D e. V -> ( <" A B C D "> ` 3 ) = D ) |
|
| 16 | 14 15 | eqtrid | |- ( D e. V -> ( P ` 3 ) = D ) |
| 17 | 13 16 | anim12i | |- ( ( C e. V /\ D e. V ) -> ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) |
| 18 | 10 17 | anim12i | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 19 | 3 18 | syl | |- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |