This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021) (Revised by AV, 24-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | |- P = <" A B C D "> |
|
| 3wlkd.f | |- F = <" J K L "> |
||
| 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
||
| 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
||
| 3wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
||
| 3wlkd.v | |- V = ( Vtx ` G ) |
||
| 3wlkd.i | |- I = ( iEdg ` G ) |
||
| Assertion | 3wlkd | |- ( ph -> F ( Walks ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | |- P = <" A B C D "> |
|
| 2 | 3wlkd.f | |- F = <" J K L "> |
|
| 3 | 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
|
| 4 | 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
|
| 5 | 3wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
|
| 6 | 3wlkd.v | |- V = ( Vtx ` G ) |
|
| 7 | 3wlkd.i | |- I = ( iEdg ` G ) |
|
| 8 | s4cli | |- <" A B C D "> e. Word _V |
|
| 9 | 1 8 | eqeltri | |- P e. Word _V |
| 10 | 9 | a1i | |- ( ph -> P e. Word _V ) |
| 11 | s3cli | |- <" J K L "> e. Word _V |
|
| 12 | 2 11 | eqeltri | |- F e. Word _V |
| 13 | 12 | a1i | |- ( ph -> F e. Word _V ) |
| 14 | 1 2 | 3wlkdlem1 | |- ( # ` P ) = ( ( # ` F ) + 1 ) |
| 15 | 14 | a1i | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
| 16 | 1 2 3 4 5 | 3wlkdlem10 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 17 | 1 2 3 4 | 3wlkdlem5 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 18 | 6 | 1vgrex | |- ( A e. V -> G e. _V ) |
| 19 | 18 | ad2antrr | |- ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> G e. _V ) |
| 20 | 3 19 | syl | |- ( ph -> G e. _V ) |
| 21 | 1 2 3 | 3wlkdlem4 | |- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
| 22 | 10 13 15 16 17 20 6 7 21 | wlkd | |- ( ph -> F ( Walks ` G ) P ) |