This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for 3wlkd . (Contributed by Alexander van der Vekens, 11-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | |- P = <" A B C D "> |
|
| 3wlkd.f | |- F = <" J K L "> |
||
| 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
||
| 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
||
| Assertion | 3wlkdlem5 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | |- P = <" A B C D "> |
|
| 2 | 3wlkd.f | |- F = <" J K L "> |
|
| 3 | 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
|
| 4 | 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
|
| 5 | simpl | |- ( ( A =/= B /\ A =/= C ) -> A =/= B ) |
|
| 6 | simpl | |- ( ( B =/= C /\ B =/= D ) -> B =/= C ) |
|
| 7 | id | |- ( C =/= D -> C =/= D ) |
|
| 8 | 5 6 7 | 3anim123i | |- ( ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) -> ( A =/= B /\ B =/= C /\ C =/= D ) ) |
| 9 | 4 8 | syl | |- ( ph -> ( A =/= B /\ B =/= C /\ C =/= D ) ) |
| 10 | 1 2 3 | 3wlkdlem3 | |- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 11 | simpl | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 0 ) = A ) |
|
| 12 | simpr | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( P ` 1 ) = B ) |
|
| 13 | 11 12 | neeq12d | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 14 | 13 | adantr | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) <-> A =/= B ) ) |
| 15 | 12 | adantr | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 1 ) = B ) |
| 16 | simpl | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 2 ) = C ) |
|
| 17 | 16 | adantl | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 2 ) = C ) |
| 18 | 15 17 | neeq12d | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 1 ) =/= ( P ` 2 ) <-> B =/= C ) ) |
| 19 | simpr | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( P ` 3 ) = D ) |
|
| 20 | 16 19 | neeq12d | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 2 ) =/= ( P ` 3 ) <-> C =/= D ) ) |
| 21 | 20 | adantl | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 2 ) =/= ( P ` 3 ) <-> C =/= D ) ) |
| 22 | 14 18 21 | 3anbi123d | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) <-> ( A =/= B /\ B =/= C /\ C =/= D ) ) ) |
| 23 | 10 22 | syl | |- ( ph -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) <-> ( A =/= B /\ B =/= C /\ C =/= D ) ) ) |
| 24 | 9 23 | mpbird | |- ( ph -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 25 | 1 2 | 3wlkdlem2 | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } |
| 26 | 25 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> A. k e. { 0 , 1 , 2 } ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 27 | c0ex | |- 0 e. _V |
|
| 28 | 1ex | |- 1 e. _V |
|
| 29 | 2ex | |- 2 e. _V |
|
| 30 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 31 | fv0p1e1 | |- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
|
| 32 | 30 31 | neeq12d | |- ( k = 0 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 33 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 34 | oveq1 | |- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
|
| 35 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 36 | 34 35 | eqtrdi | |- ( k = 1 -> ( k + 1 ) = 2 ) |
| 37 | 36 | fveq2d | |- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
| 38 | 33 37 | neeq12d | |- ( k = 1 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 39 | fveq2 | |- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
|
| 40 | oveq1 | |- ( k = 2 -> ( k + 1 ) = ( 2 + 1 ) ) |
|
| 41 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 42 | 40 41 | eqtrdi | |- ( k = 2 -> ( k + 1 ) = 3 ) |
| 43 | 42 | fveq2d | |- ( k = 2 -> ( P ` ( k + 1 ) ) = ( P ` 3 ) ) |
| 44 | 39 43 | neeq12d | |- ( k = 2 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 45 | 27 28 29 32 38 44 | raltp | |- ( A. k e. { 0 , 1 , 2 } ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 46 | 26 45 | bitri | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 47 | 24 46 | sylibr | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |