This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 10 for 3wlkd . (Contributed by Alexander van der Vekens, 12-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | |- P = <" A B C D "> |
|
| 3wlkd.f | |- F = <" J K L "> |
||
| 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
||
| 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
||
| 3wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
||
| Assertion | 3wlkdlem10 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | |- P = <" A B C D "> |
|
| 2 | 3wlkd.f | |- F = <" J K L "> |
|
| 3 | 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
|
| 4 | 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
|
| 5 | 3wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
|
| 6 | 1 2 3 4 5 | 3wlkdlem9 | |- ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) ) |
| 7 | 1 2 3 | 3wlkdlem3 | |- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 8 | preq12 | |- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> { ( P ` 0 ) , ( P ` 1 ) } = { A , B } ) |
|
| 9 | 8 | adantr | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> { ( P ` 0 ) , ( P ` 1 ) } = { A , B } ) |
| 10 | 9 | sseq1d | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` ( F ` 0 ) ) ) ) |
| 11 | simplr | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 1 ) = B ) |
|
| 12 | simprl | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 2 ) = C ) |
|
| 13 | 11 12 | preq12d | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> { ( P ` 1 ) , ( P ` 2 ) } = { B , C } ) |
| 14 | 13 | sseq1d | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` ( F ` 1 ) ) ) ) |
| 15 | preq12 | |- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> { ( P ` 2 ) , ( P ` 3 ) } = { C , D } ) |
|
| 16 | 15 | adantl | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> { ( P ` 2 ) , ( P ` 3 ) } = { C , D } ) |
| 17 | 16 | sseq1d | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) <-> { C , D } C_ ( I ` ( F ` 2 ) ) ) ) |
| 18 | 10 14 17 | 3anbi123d | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) <-> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) ) ) |
| 19 | 7 18 | syl | |- ( ph -> ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) <-> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) ) ) |
| 20 | 6 19 | mpbird | |- ( ph -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
| 21 | 1 2 | 3wlkdlem2 | |- ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } |
| 22 | 21 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> A. k e. { 0 , 1 , 2 } { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 23 | c0ex | |- 0 e. _V |
|
| 24 | 1ex | |- 1 e. _V |
|
| 25 | 2ex | |- 2 e. _V |
|
| 26 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 27 | fv0p1e1 | |- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
|
| 28 | 26 27 | preq12d | |- ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 29 | 2fveq3 | |- ( k = 0 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 0 ) ) ) |
|
| 30 | 28 29 | sseq12d | |- ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 31 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 32 | oveq1 | |- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
|
| 33 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 34 | 32 33 | eqtrdi | |- ( k = 1 -> ( k + 1 ) = 2 ) |
| 35 | 34 | fveq2d | |- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
| 36 | 31 35 | preq12d | |- ( k = 1 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 37 | 2fveq3 | |- ( k = 1 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 1 ) ) ) |
|
| 38 | 36 37 | sseq12d | |- ( k = 1 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) ) |
| 39 | fveq2 | |- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
|
| 40 | oveq1 | |- ( k = 2 -> ( k + 1 ) = ( 2 + 1 ) ) |
|
| 41 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 42 | 40 41 | eqtrdi | |- ( k = 2 -> ( k + 1 ) = 3 ) |
| 43 | 42 | fveq2d | |- ( k = 2 -> ( P ` ( k + 1 ) ) = ( P ` 3 ) ) |
| 44 | 39 43 | preq12d | |- ( k = 2 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
| 45 | 2fveq3 | |- ( k = 2 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 2 ) ) ) |
|
| 46 | 44 45 | sseq12d | |- ( k = 2 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
| 47 | 23 24 25 30 38 46 | raltp | |- ( A. k e. { 0 , 1 , 2 } { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
| 48 | 22 47 | bitri | |- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
| 49 | 20 48 | sylibr | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |