This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: pm13.193 for two variables. pm13.193 is Theorem *13.193 in WhiteheadRussell p. 179. Derived from 2pm13.193VD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2pm13.193 | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> x = u ) |
|
| 2 | simplr | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> y = v ) |
|
| 3 | simpr | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> [ u / x ] [ v / y ] ph ) |
|
| 4 | sbequ2 | |- ( x = u -> ( [ u / x ] [ v / y ] ph -> [ v / y ] ph ) ) |
|
| 5 | 1 3 4 | sylc | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> [ v / y ] ph ) |
| 6 | sbequ2 | |- ( y = v -> ( [ v / y ] ph -> ph ) ) |
|
| 7 | 2 5 6 | sylc | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ph ) |
| 8 | 1 2 7 | jca31 | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ( ( x = u /\ y = v ) /\ ph ) ) |
| 9 | simpll | |- ( ( ( x = u /\ y = v ) /\ ph ) -> x = u ) |
|
| 10 | simplr | |- ( ( ( x = u /\ y = v ) /\ ph ) -> y = v ) |
|
| 11 | simpr | |- ( ( ( x = u /\ y = v ) /\ ph ) -> ph ) |
|
| 12 | sbequ1 | |- ( y = v -> ( ph -> [ v / y ] ph ) ) |
|
| 13 | 10 11 12 | sylc | |- ( ( ( x = u /\ y = v ) /\ ph ) -> [ v / y ] ph ) |
| 14 | sbequ1 | |- ( x = u -> ( [ v / y ] ph -> [ u / x ] [ v / y ] ph ) ) |
|
| 15 | 9 13 14 | sylc | |- ( ( ( x = u /\ y = v ) /\ ph ) -> [ u / x ] [ v / y ] ph ) |
| 16 | 9 10 15 | jca31 | |- ( ( ( x = u /\ y = v ) /\ ph ) -> ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
| 17 | 8 16 | impbii | |- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) ) |