This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sb5 | |- ( [ z / x ] [ w / y ] ph <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5 | |- ( [ z / x ] [ w / y ] ph <-> E. x ( x = z /\ [ w / y ] ph ) ) |
|
| 2 | 19.42v | |- ( E. y ( x = z /\ ( y = w /\ ph ) ) <-> ( x = z /\ E. y ( y = w /\ ph ) ) ) |
|
| 3 | anass | |- ( ( ( x = z /\ y = w ) /\ ph ) <-> ( x = z /\ ( y = w /\ ph ) ) ) |
|
| 4 | 3 | exbii | |- ( E. y ( ( x = z /\ y = w ) /\ ph ) <-> E. y ( x = z /\ ( y = w /\ ph ) ) ) |
| 5 | sb5 | |- ( [ w / y ] ph <-> E. y ( y = w /\ ph ) ) |
|
| 6 | 5 | anbi2i | |- ( ( x = z /\ [ w / y ] ph ) <-> ( x = z /\ E. y ( y = w /\ ph ) ) ) |
| 7 | 2 4 6 | 3bitr4ri | |- ( ( x = z /\ [ w / y ] ph ) <-> E. y ( ( x = z /\ y = w ) /\ ph ) ) |
| 8 | 7 | exbii | |- ( E. x ( x = z /\ [ w / y ] ph ) <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) ) |
| 9 | 1 8 | bitri | |- ( [ z / x ] [ w / y ] ph <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) ) |