This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of implication over biconditional. Theorem *5.32 of WhiteheadRussell p. 125. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.32 | |- ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph /\ ps ) <-> ( ph /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi | |- ( ( ps <-> ch ) <-> ( -. ps <-> -. ch ) ) |
|
| 2 | 1 | imbi2i | |- ( ( ph -> ( ps <-> ch ) ) <-> ( ph -> ( -. ps <-> -. ch ) ) ) |
| 3 | pm5.74 | |- ( ( ph -> ( -. ps <-> -. ch ) ) <-> ( ( ph -> -. ps ) <-> ( ph -> -. ch ) ) ) |
|
| 4 | notbi | |- ( ( ( ph -> -. ps ) <-> ( ph -> -. ch ) ) <-> ( -. ( ph -> -. ps ) <-> -. ( ph -> -. ch ) ) ) |
|
| 5 | 2 3 4 | 3bitri | |- ( ( ph -> ( ps <-> ch ) ) <-> ( -. ( ph -> -. ps ) <-> -. ( ph -> -. ch ) ) ) |
| 6 | df-an | |- ( ( ph /\ ps ) <-> -. ( ph -> -. ps ) ) |
|
| 7 | df-an | |- ( ( ph /\ ch ) <-> -. ( ph -> -. ch ) ) |
|
| 8 | 6 7 | bibi12i | |- ( ( ( ph /\ ps ) <-> ( ph /\ ch ) ) <-> ( -. ( ph -> -. ps ) <-> -. ( ph -> -. ch ) ) ) |
| 9 | 5 8 | bitr4i | |- ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph /\ ps ) <-> ( ph /\ ch ) ) ) |