This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute the unabbreviated form of proper substitution in and out of a conjunction. 2uasbanh is derived from 2uasbanhVD . (Contributed by Alan Sare, 31-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2uasbanh.1 | |- ( ch <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
|
| Assertion | 2uasbanh | |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2uasbanh.1 | |- ( ch <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
|
| 2 | simpl | |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( x = u /\ y = v ) ) |
|
| 3 | simprl | |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ph ) |
|
| 4 | 2 3 | jca | |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ph ) ) |
| 5 | 4 | 2eximi | |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
| 6 | simprr | |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ps ) |
|
| 7 | 2 6 | jca | |- ( ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( ( x = u /\ y = v ) /\ ps ) ) |
| 8 | 7 | 2eximi | |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) |
| 9 | 5 8 | jca | |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) -> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
| 10 | 1 | simplbi | |- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |
| 11 | simpl | |- ( ( ( x = u /\ y = v ) /\ ph ) -> ( x = u /\ y = v ) ) |
|
| 12 | 11 | 2eximi | |- ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) -> E. x E. y ( x = u /\ y = v ) ) |
| 13 | 10 12 | syl | |- ( ch -> E. x E. y ( x = u /\ y = v ) ) |
| 14 | ax6e2ndeq | |- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |
|
| 15 | 13 14 | sylibr | |- ( ch -> ( -. A. x x = y \/ u = v ) ) |
| 16 | 2sb5nd | |- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
|
| 17 | 15 16 | syl | |- ( ch -> ( [ u / x ] [ v / y ] ph <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) ) |
| 18 | 10 17 | mpbird | |- ( ch -> [ u / x ] [ v / y ] ph ) |
| 19 | 1 | simprbi | |- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) |
| 20 | 2sb5nd | |- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
|
| 21 | 15 20 | syl | |- ( ch -> ( [ u / x ] [ v / y ] ps <-> E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |
| 22 | 19 21 | mpbird | |- ( ch -> [ u / x ] [ v / y ] ps ) |
| 23 | sban | |- ( [ v / y ] ( ph /\ ps ) <-> ( [ v / y ] ph /\ [ v / y ] ps ) ) |
|
| 24 | 23 | sbbii | |- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) ) |
| 25 | sban | |- ( [ u / x ] ( [ v / y ] ph /\ [ v / y ] ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) |
|
| 26 | 24 25 | bitri | |- ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> ( [ u / x ] [ v / y ] ph /\ [ u / x ] [ v / y ] ps ) ) |
| 27 | 18 22 26 | sylanbrc | |- ( ch -> [ u / x ] [ v / y ] ( ph /\ ps ) ) |
| 28 | 2sb5nd | |- ( ( -. A. x x = y \/ u = v ) -> ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ) |
|
| 29 | 15 28 | syl | |- ( ch -> ( [ u / x ] [ v / y ] ( ph /\ ps ) <-> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) ) |
| 30 | 27 29 | mpbid | |- ( ch -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) |
| 31 | 1 30 | sylbir | |- ( ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) -> E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) ) |
| 32 | 9 31 | impbii | |- ( E. x E. y ( ( x = u /\ y = v ) /\ ( ph /\ ps ) ) <-> ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) /\ E. x E. y ( ( x = u /\ y = v ) /\ ps ) ) ) |