This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcne12 | |- ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne | |- ( -. B =/= C <-> B = C ) |
|
| 2 | 1 | sbcbii | |- ( [. A / x ]. -. B =/= C <-> [. A / x ]. B = C ) |
| 3 | 2 | a1i | |- ( A e. _V -> ( [. A / x ]. -. B =/= C <-> [. A / x ]. B = C ) ) |
| 4 | sbcng | |- ( A e. _V -> ( [. A / x ]. -. B =/= C <-> -. [. A / x ]. B =/= C ) ) |
|
| 5 | sbceqg | |- ( A e. _V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |
|
| 6 | nne | |- ( -. [_ A / x ]_ B =/= [_ A / x ]_ C <-> [_ A / x ]_ B = [_ A / x ]_ C ) |
|
| 7 | 5 6 | bitr4di | |- ( A e. _V -> ( [. A / x ]. B = C <-> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 8 | 3 4 7 | 3bitr3d | |- ( A e. _V -> ( -. [. A / x ]. B =/= C <-> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 9 | 8 | con4bid | |- ( A e. _V -> ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 10 | sbcex | |- ( [. A / x ]. B =/= C -> A e. _V ) |
|
| 11 | 10 | con3i | |- ( -. A e. _V -> -. [. A / x ]. B =/= C ) |
| 12 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
|
| 13 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
|
| 14 | 12 13 | eqtr4d | |- ( -. A e. _V -> [_ A / x ]_ B = [_ A / x ]_ C ) |
| 15 | 14 6 | sylibr | |- ( -. A e. _V -> -. [_ A / x ]_ B =/= [_ A / x ]_ C ) |
| 16 | 11 15 | 2falsed | |- ( -. A e. _V -> ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) ) |
| 17 | 9 16 | pm2.61i | |- ( [. A / x ]. B =/= C <-> [_ A / x ]_ B =/= [_ A / x ]_ C ) |