This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf . (Contributed by Alan Sare, 10-Nov-2012) Reduce axiom usage. (Revised by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcg | |- ( A e. V -> ( [. A / x ]. ph <-> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc | |- ( [. A / x ]. ph <-> A e. { x | ph } ) |
|
| 2 | dfclel | |- ( A e. { x | ph } <-> E. y ( y = A /\ y e. { x | ph } ) ) |
|
| 3 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 4 | sbv | |- ( [ y / x ] ph <-> ph ) |
|
| 5 | 3 4 | bitri | |- ( y e. { x | ph } <-> ph ) |
| 6 | 5 | anbi2i | |- ( ( y = A /\ y e. { x | ph } ) <-> ( y = A /\ ph ) ) |
| 7 | 6 | exbii | |- ( E. y ( y = A /\ y e. { x | ph } ) <-> E. y ( y = A /\ ph ) ) |
| 8 | 1 2 7 | 3bitrri | |- ( E. y ( y = A /\ ph ) <-> [. A / x ]. ph ) |
| 9 | dfclel | |- ( A e. V <-> E. y ( y = A /\ y e. V ) ) |
|
| 10 | 9 | biimpi | |- ( A e. V -> E. y ( y = A /\ y e. V ) ) |
| 11 | simpr | |- ( ( y = A /\ ph ) -> ph ) |
|
| 12 | 11 | ax-gen | |- A. y ( ( y = A /\ ph ) -> ph ) |
| 13 | 19.23v | |- ( A. y ( ( y = A /\ ph ) -> ph ) <-> ( E. y ( y = A /\ ph ) -> ph ) ) |
|
| 14 | 13 | biimpi | |- ( A. y ( ( y = A /\ ph ) -> ph ) -> ( E. y ( y = A /\ ph ) -> ph ) ) |
| 15 | 12 14 | mp1i | |- ( E. y ( y = A /\ y e. V ) -> ( E. y ( y = A /\ ph ) -> ph ) ) |
| 16 | 2a1 | |- ( y = A -> ( y e. V -> ( ph -> y = A ) ) ) |
|
| 17 | 16 | imp | |- ( ( y = A /\ y e. V ) -> ( ph -> y = A ) ) |
| 18 | 17 | ancrd | |- ( ( y = A /\ y e. V ) -> ( ph -> ( y = A /\ ph ) ) ) |
| 19 | 18 | eximi | |- ( E. y ( y = A /\ y e. V ) -> E. y ( ph -> ( y = A /\ ph ) ) ) |
| 20 | 19.37imv | |- ( E. y ( ph -> ( y = A /\ ph ) ) -> ( ph -> E. y ( y = A /\ ph ) ) ) |
|
| 21 | 19 20 | syl | |- ( E. y ( y = A /\ y e. V ) -> ( ph -> E. y ( y = A /\ ph ) ) ) |
| 22 | 15 21 | impbid | |- ( E. y ( y = A /\ y e. V ) -> ( E. y ( y = A /\ ph ) <-> ph ) ) |
| 23 | 10 22 | syl | |- ( A e. V -> ( E. y ( y = A /\ ph ) <-> ph ) ) |
| 24 | 8 23 | bitr3id | |- ( A e. V -> ( [. A / x ]. ph <-> ph ) ) |