This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2dom | |- ( 2o ~<_ A -> E. x e. A E. y e. A -. x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 | |- 2o = { (/) , { (/) } } |
|
| 2 | 1 | breq1i | |- ( 2o ~<_ A <-> { (/) , { (/) } } ~<_ A ) |
| 3 | brdomi | |- ( { (/) , { (/) } } ~<_ A -> E. f f : { (/) , { (/) } } -1-1-> A ) |
|
| 4 | 2 3 | sylbi | |- ( 2o ~<_ A -> E. f f : { (/) , { (/) } } -1-1-> A ) |
| 5 | f1f | |- ( f : { (/) , { (/) } } -1-1-> A -> f : { (/) , { (/) } } --> A ) |
|
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 6 | prid1 | |- (/) e. { (/) , { (/) } } |
| 8 | ffvelcdm | |- ( ( f : { (/) , { (/) } } --> A /\ (/) e. { (/) , { (/) } } ) -> ( f ` (/) ) e. A ) |
|
| 9 | 5 7 8 | sylancl | |- ( f : { (/) , { (/) } } -1-1-> A -> ( f ` (/) ) e. A ) |
| 10 | snex | |- { (/) } e. _V |
|
| 11 | 10 | prid2 | |- { (/) } e. { (/) , { (/) } } |
| 12 | ffvelcdm | |- ( ( f : { (/) , { (/) } } --> A /\ { (/) } e. { (/) , { (/) } } ) -> ( f ` { (/) } ) e. A ) |
|
| 13 | 5 11 12 | sylancl | |- ( f : { (/) , { (/) } } -1-1-> A -> ( f ` { (/) } ) e. A ) |
| 14 | 0nep0 | |- (/) =/= { (/) } |
|
| 15 | 14 | neii | |- -. (/) = { (/) } |
| 16 | f1fveq | |- ( ( f : { (/) , { (/) } } -1-1-> A /\ ( (/) e. { (/) , { (/) } } /\ { (/) } e. { (/) , { (/) } } ) ) -> ( ( f ` (/) ) = ( f ` { (/) } ) <-> (/) = { (/) } ) ) |
|
| 17 | 7 11 16 | mpanr12 | |- ( f : { (/) , { (/) } } -1-1-> A -> ( ( f ` (/) ) = ( f ` { (/) } ) <-> (/) = { (/) } ) ) |
| 18 | 15 17 | mtbiri | |- ( f : { (/) , { (/) } } -1-1-> A -> -. ( f ` (/) ) = ( f ` { (/) } ) ) |
| 19 | eqeq1 | |- ( x = ( f ` (/) ) -> ( x = y <-> ( f ` (/) ) = y ) ) |
|
| 20 | 19 | notbid | |- ( x = ( f ` (/) ) -> ( -. x = y <-> -. ( f ` (/) ) = y ) ) |
| 21 | eqeq2 | |- ( y = ( f ` { (/) } ) -> ( ( f ` (/) ) = y <-> ( f ` (/) ) = ( f ` { (/) } ) ) ) |
|
| 22 | 21 | notbid | |- ( y = ( f ` { (/) } ) -> ( -. ( f ` (/) ) = y <-> -. ( f ` (/) ) = ( f ` { (/) } ) ) ) |
| 23 | 20 22 | rspc2ev | |- ( ( ( f ` (/) ) e. A /\ ( f ` { (/) } ) e. A /\ -. ( f ` (/) ) = ( f ` { (/) } ) ) -> E. x e. A E. y e. A -. x = y ) |
| 24 | 9 13 18 23 | syl3anc | |- ( f : { (/) , { (/) } } -1-1-> A -> E. x e. A E. y e. A -. x = y ) |
| 25 | 24 | exlimiv | |- ( E. f f : { (/) , { (/) } } -1-1-> A -> E. x e. A E. y e. A -. x = y ) |
| 26 | 4 25 | syl | |- ( 2o ~<_ A -> E. x e. A E. y e. A -. x = y ) |