This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unxpdom . (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unxpdomlem1.1 | |- F = ( x e. ( a u. b ) |-> G ) |
|
| unxpdomlem1.2 | |- G = if ( x e. a , <. x , if ( x = m , t , s ) >. , <. if ( x = t , n , m ) , x >. ) |
||
| Assertion | unxpdomlem1 | |- ( z e. ( a u. b ) -> ( F ` z ) = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unxpdomlem1.1 | |- F = ( x e. ( a u. b ) |-> G ) |
|
| 2 | unxpdomlem1.2 | |- G = if ( x e. a , <. x , if ( x = m , t , s ) >. , <. if ( x = t , n , m ) , x >. ) |
|
| 3 | elequ1 | |- ( x = z -> ( x e. a <-> z e. a ) ) |
|
| 4 | opeq1 | |- ( x = z -> <. x , if ( x = m , t , s ) >. = <. z , if ( x = m , t , s ) >. ) |
|
| 5 | equequ1 | |- ( x = z -> ( x = m <-> z = m ) ) |
|
| 6 | 5 | ifbid | |- ( x = z -> if ( x = m , t , s ) = if ( z = m , t , s ) ) |
| 7 | 6 | opeq2d | |- ( x = z -> <. z , if ( x = m , t , s ) >. = <. z , if ( z = m , t , s ) >. ) |
| 8 | 4 7 | eqtrd | |- ( x = z -> <. x , if ( x = m , t , s ) >. = <. z , if ( z = m , t , s ) >. ) |
| 9 | equequ1 | |- ( x = z -> ( x = t <-> z = t ) ) |
|
| 10 | 9 | ifbid | |- ( x = z -> if ( x = t , n , m ) = if ( z = t , n , m ) ) |
| 11 | 10 | opeq1d | |- ( x = z -> <. if ( x = t , n , m ) , x >. = <. if ( z = t , n , m ) , x >. ) |
| 12 | opeq2 | |- ( x = z -> <. if ( z = t , n , m ) , x >. = <. if ( z = t , n , m ) , z >. ) |
|
| 13 | 11 12 | eqtrd | |- ( x = z -> <. if ( x = t , n , m ) , x >. = <. if ( z = t , n , m ) , z >. ) |
| 14 | 3 8 13 | ifbieq12d | |- ( x = z -> if ( x e. a , <. x , if ( x = m , t , s ) >. , <. if ( x = t , n , m ) , x >. ) = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |
| 15 | 2 14 | eqtrid | |- ( x = z -> G = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |
| 16 | opex | |- <. z , if ( z = m , t , s ) >. e. _V |
|
| 17 | opex | |- <. if ( z = t , n , m ) , z >. e. _V |
|
| 18 | 16 17 | ifex | |- if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) e. _V |
| 19 | 15 1 18 | fvmpt | |- ( z e. ( a u. b ) -> ( F ` z ) = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |