This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| 1arithlem4.2 | |- G = ( y e. NN |-> if ( y e. Prime , ( y ^ ( F ` y ) ) , 1 ) ) |
||
| 1arithlem4.3 | |- ( ph -> F : Prime --> NN0 ) |
||
| 1arithlem4.4 | |- ( ph -> N e. NN ) |
||
| 1arithlem4.5 | |- ( ( ph /\ ( q e. Prime /\ N <_ q ) ) -> ( F ` q ) = 0 ) |
||
| Assertion | 1arithlem4 | |- ( ph -> E. x e. NN F = ( M ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| 2 | 1arithlem4.2 | |- G = ( y e. NN |-> if ( y e. Prime , ( y ^ ( F ` y ) ) , 1 ) ) |
|
| 3 | 1arithlem4.3 | |- ( ph -> F : Prime --> NN0 ) |
|
| 4 | 1arithlem4.4 | |- ( ph -> N e. NN ) |
|
| 5 | 1arithlem4.5 | |- ( ( ph /\ ( q e. Prime /\ N <_ q ) ) -> ( F ` q ) = 0 ) |
|
| 6 | 3 | ffvelcdmda | |- ( ( ph /\ y e. Prime ) -> ( F ` y ) e. NN0 ) |
| 7 | 6 | ralrimiva | |- ( ph -> A. y e. Prime ( F ` y ) e. NN0 ) |
| 8 | 2 7 | pcmptcl | |- ( ph -> ( G : NN --> NN /\ seq 1 ( x. , G ) : NN --> NN ) ) |
| 9 | 8 | simprd | |- ( ph -> seq 1 ( x. , G ) : NN --> NN ) |
| 10 | 9 4 | ffvelcdmd | |- ( ph -> ( seq 1 ( x. , G ) ` N ) e. NN ) |
| 11 | 1 | 1arithlem2 | |- ( ( ( seq 1 ( x. , G ) ` N ) e. NN /\ q e. Prime ) -> ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) = ( q pCnt ( seq 1 ( x. , G ) ` N ) ) ) |
| 12 | 10 11 | sylan | |- ( ( ph /\ q e. Prime ) -> ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) = ( q pCnt ( seq 1 ( x. , G ) ` N ) ) ) |
| 13 | 7 | adantr | |- ( ( ph /\ q e. Prime ) -> A. y e. Prime ( F ` y ) e. NN0 ) |
| 14 | 4 | adantr | |- ( ( ph /\ q e. Prime ) -> N e. NN ) |
| 15 | simpr | |- ( ( ph /\ q e. Prime ) -> q e. Prime ) |
|
| 16 | fveq2 | |- ( y = q -> ( F ` y ) = ( F ` q ) ) |
|
| 17 | 2 13 14 15 16 | pcmpt | |- ( ( ph /\ q e. Prime ) -> ( q pCnt ( seq 1 ( x. , G ) ` N ) ) = if ( q <_ N , ( F ` q ) , 0 ) ) |
| 18 | 14 | nnred | |- ( ( ph /\ q e. Prime ) -> N e. RR ) |
| 19 | prmz | |- ( q e. Prime -> q e. ZZ ) |
|
| 20 | 19 | zred | |- ( q e. Prime -> q e. RR ) |
| 21 | 20 | adantl | |- ( ( ph /\ q e. Prime ) -> q e. RR ) |
| 22 | 5 | anassrs | |- ( ( ( ph /\ q e. Prime ) /\ N <_ q ) -> ( F ` q ) = 0 ) |
| 23 | 22 | ifeq2d | |- ( ( ( ph /\ q e. Prime ) /\ N <_ q ) -> if ( q <_ N , ( F ` q ) , ( F ` q ) ) = if ( q <_ N , ( F ` q ) , 0 ) ) |
| 24 | ifid | |- if ( q <_ N , ( F ` q ) , ( F ` q ) ) = ( F ` q ) |
|
| 25 | 23 24 | eqtr3di | |- ( ( ( ph /\ q e. Prime ) /\ N <_ q ) -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
| 26 | iftrue | |- ( q <_ N -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
|
| 27 | 26 | adantl | |- ( ( ( ph /\ q e. Prime ) /\ q <_ N ) -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
| 28 | 18 21 25 27 | lecasei | |- ( ( ph /\ q e. Prime ) -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
| 29 | 12 17 28 | 3eqtrrd | |- ( ( ph /\ q e. Prime ) -> ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) |
| 31 | 1 | 1arithlem3 | |- ( ( seq 1 ( x. , G ) ` N ) e. NN -> ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 ) |
| 32 | 10 31 | syl | |- ( ph -> ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 ) |
| 33 | ffn | |- ( F : Prime --> NN0 -> F Fn Prime ) |
|
| 34 | ffn | |- ( ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 -> ( M ` ( seq 1 ( x. , G ) ` N ) ) Fn Prime ) |
|
| 35 | eqfnfv | |- ( ( F Fn Prime /\ ( M ` ( seq 1 ( x. , G ) ` N ) ) Fn Prime ) -> ( F = ( M ` ( seq 1 ( x. , G ) ` N ) ) <-> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) ) |
|
| 36 | 33 34 35 | syl2an | |- ( ( F : Prime --> NN0 /\ ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 ) -> ( F = ( M ` ( seq 1 ( x. , G ) ` N ) ) <-> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) ) |
| 37 | 3 32 36 | syl2anc | |- ( ph -> ( F = ( M ` ( seq 1 ( x. , G ) ` N ) ) <-> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) ) |
| 38 | 30 37 | mpbird | |- ( ph -> F = ( M ` ( seq 1 ( x. , G ) ` N ) ) ) |
| 39 | fveq2 | |- ( x = ( seq 1 ( x. , G ) ` N ) -> ( M ` x ) = ( M ` ( seq 1 ( x. , G ) ` N ) ) ) |
|
| 40 | 39 | rspceeqv | |- ( ( ( seq 1 ( x. , G ) ` N ) e. NN /\ F = ( M ` ( seq 1 ( x. , G ) ` N ) ) ) -> E. x e. NN F = ( M ` x ) ) |
| 41 | 10 38 40 | syl2anc | |- ( ph -> E. x e. NN F = ( M ` x ) ) |