This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
| 1arithlem4.2 | ⊢ 𝐺 = ( 𝑦 ∈ ℕ ↦ if ( 𝑦 ∈ ℙ , ( 𝑦 ↑ ( 𝐹 ‘ 𝑦 ) ) , 1 ) ) | ||
| 1arithlem4.3 | ⊢ ( 𝜑 → 𝐹 : ℙ ⟶ ℕ0 ) | ||
| 1arithlem4.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| 1arithlem4.5 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞 ) ) → ( 𝐹 ‘ 𝑞 ) = 0 ) | ||
| Assertion | 1arithlem4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℕ 𝐹 = ( 𝑀 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
| 2 | 1arithlem4.2 | ⊢ 𝐺 = ( 𝑦 ∈ ℕ ↦ if ( 𝑦 ∈ ℙ , ( 𝑦 ↑ ( 𝐹 ‘ 𝑦 ) ) , 1 ) ) | |
| 3 | 1arithlem4.3 | ⊢ ( 𝜑 → 𝐹 : ℙ ⟶ ℕ0 ) | |
| 4 | 1arithlem4.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 5 | 1arithlem4.5 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞 ) ) → ( 𝐹 ‘ 𝑞 ) = 0 ) | |
| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℙ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℙ ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
| 8 | 2 7 | pcmptcl | ⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐺 ) : ℕ ⟶ ℕ ) ) |
| 9 | 8 | simprd | ⊢ ( 𝜑 → seq 1 ( · , 𝐺 ) : ℕ ⟶ ℕ ) |
| 10 | 9 4 | ffvelcdmd | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ ) |
| 11 | 1 | 1arithlem2 | ⊢ ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
| 12 | 10 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
| 13 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ∀ 𝑦 ∈ ℙ ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
| 14 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) | |
| 16 | fveq2 | ⊢ ( 𝑦 = 𝑞 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑞 ) ) | |
| 17 | 2 13 14 15 16 | pcmpt | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) = if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) ) |
| 18 | 14 | nnred | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
| 19 | prmz | ⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) | |
| 20 | 19 | zred | ⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℝ ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℝ ) |
| 22 | 5 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑁 ≤ 𝑞 ) → ( 𝐹 ‘ 𝑞 ) = 0 ) |
| 23 | 22 | ifeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑁 ≤ 𝑞 ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , ( 𝐹 ‘ 𝑞 ) ) = if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) ) |
| 24 | ifid | ⊢ if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , ( 𝐹 ‘ 𝑞 ) ) = ( 𝐹 ‘ 𝑞 ) | |
| 25 | 23 24 | eqtr3di | ⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑁 ≤ 𝑞 ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 26 | iftrue | ⊢ ( 𝑞 ≤ 𝑁 → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ≤ 𝑁 ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 28 | 18 21 25 27 | lecasei | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 29 | 12 17 28 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) |
| 31 | 1 | 1arithlem3 | ⊢ ( ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ → ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) |
| 32 | 10 31 | syl | ⊢ ( 𝜑 → ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) |
| 33 | ffn | ⊢ ( 𝐹 : ℙ ⟶ ℕ0 → 𝐹 Fn ℙ ) | |
| 34 | ffn | ⊢ ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 → ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) Fn ℙ ) | |
| 35 | eqfnfv | ⊢ ( ( 𝐹 Fn ℙ ∧ ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) Fn ℙ ) → ( 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) | |
| 36 | 33 34 35 | syl2an | ⊢ ( ( 𝐹 : ℙ ⟶ ℕ0 ∧ ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) → ( 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) |
| 37 | 3 32 36 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) |
| 38 | 30 37 | mpbird | ⊢ ( 𝜑 → 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
| 39 | fveq2 | ⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) | |
| 40 | 39 | rspceeqv | ⊢ ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ ∧ 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ℕ 𝐹 = ( 𝑀 ‘ 𝑥 ) ) |
| 41 | 10 38 40 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℕ 𝐹 = ( 𝑀 ‘ 𝑥 ) ) |