This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| Assertion | 1arithlem2 | |- ( ( N e. NN /\ P e. Prime ) -> ( ( M ` N ) ` P ) = ( P pCnt N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| 2 | 1 | 1arithlem1 | |- ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) |
| 3 | 2 | fveq1d | |- ( N e. NN -> ( ( M ` N ) ` P ) = ( ( p e. Prime |-> ( p pCnt N ) ) ` P ) ) |
| 4 | oveq1 | |- ( p = P -> ( p pCnt N ) = ( P pCnt N ) ) |
|
| 5 | eqid | |- ( p e. Prime |-> ( p pCnt N ) ) = ( p e. Prime |-> ( p pCnt N ) ) |
|
| 6 | ovex | |- ( P pCnt N ) e. _V |
|
| 7 | 4 5 6 | fvmpt | |- ( P e. Prime -> ( ( p e. Prime |-> ( p pCnt N ) ) ` P ) = ( P pCnt N ) ) |
| 8 | 3 7 | sylan9eq | |- ( ( N e. NN /\ P e. Prime ) -> ( ( M ` N ) ` P ) = ( P pCnt N ) ) |