This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0wlkon | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( WalksOn ` G ) N ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | |- V = ( Vtx ` G ) |
|
| 2 | simpl | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P : ( 0 ... 0 ) --> V ) |
|
| 3 | 1 | 0wlkonlem1 | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |
| 4 | 1 | 1vgrex | |- ( N e. V -> G e. _V ) |
| 5 | 4 | adantr | |- ( ( N e. V /\ N e. V ) -> G e. _V ) |
| 6 | 1 | 0wlk | |- ( G e. _V -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 7 | 3 5 6 | 3syl | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 8 | 2 7 | mpbird | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( Walks ` G ) P ) |
| 9 | simpr | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( P ` 0 ) = N ) |
|
| 10 | hash0 | |- ( # ` (/) ) = 0 |
|
| 11 | 10 | fveq2i | |- ( P ` ( # ` (/) ) ) = ( P ` 0 ) |
| 12 | 11 9 | eqtrid | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( P ` ( # ` (/) ) ) = N ) |
| 13 | 0ex | |- (/) e. _V |
|
| 14 | 13 | a1i | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) e. _V ) |
| 15 | 1 | 0wlkonlem2 | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) ) |
| 16 | 1 | iswlkon | |- ( ( ( N e. V /\ N e. V ) /\ ( (/) e. _V /\ P e. ( V ^pm ( 0 ... 0 ) ) ) ) -> ( (/) ( N ( WalksOn ` G ) N ) P <-> ( (/) ( Walks ` G ) P /\ ( P ` 0 ) = N /\ ( P ` ( # ` (/) ) ) = N ) ) ) |
| 17 | 3 14 15 16 | syl12anc | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( N ( WalksOn ` G ) N ) P <-> ( (/) ( Walks ` G ) P /\ ( P ` 0 ) = N /\ ( P ` ( # ` (/) ) ) = N ) ) ) |
| 18 | 8 9 12 17 | mpbir3and | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( WalksOn ` G ) N ) P ) |