This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a trail iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0trl | |- ( G e. U -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | 0wlk | |- ( G e. U -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 3 | 2 | anbi1d | |- ( G e. U -> ( ( (/) ( Walks ` G ) P /\ Fun `' (/) ) <-> ( P : ( 0 ... 0 ) --> V /\ Fun `' (/) ) ) ) |
| 4 | istrl | |- ( (/) ( Trails ` G ) P <-> ( (/) ( Walks ` G ) P /\ Fun `' (/) ) ) |
|
| 5 | funcnv0 | |- Fun `' (/) |
|
| 6 | 5 | biantru | |- ( P : ( 0 ... 0 ) --> V <-> ( P : ( 0 ... 0 ) --> V /\ Fun `' (/) ) ) |
| 7 | 3 4 6 | 3bitr4g | |- ( G e. U -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |