This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0wlkonlem1 | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | |- V = ( Vtx ` G ) |
|
| 2 | id | |- ( P : ( 0 ... 0 ) --> V -> P : ( 0 ... 0 ) --> V ) |
|
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | 0elfz | |- ( 0 e. NN0 -> 0 e. ( 0 ... 0 ) ) |
|
| 5 | 3 4 | mp1i | |- ( P : ( 0 ... 0 ) --> V -> 0 e. ( 0 ... 0 ) ) |
| 6 | 2 5 | ffvelcdmd | |- ( P : ( 0 ... 0 ) --> V -> ( P ` 0 ) e. V ) |
| 7 | 6 | adantr | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( P ` 0 ) e. V ) |
| 8 | eleq1 | |- ( N = ( P ` 0 ) -> ( N e. V <-> ( P ` 0 ) e. V ) ) |
|
| 9 | 8 | eqcoms | |- ( ( P ` 0 ) = N -> ( N e. V <-> ( P ` 0 ) e. V ) ) |
| 10 | 9 | adantl | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V <-> ( P ` 0 ) e. V ) ) |
| 11 | 7 10 | mpbird | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> N e. V ) |
| 12 | id | |- ( N e. V -> N e. V ) |
|
| 13 | 11 12 | jccir | |- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |