This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nsgid.z | |- B = ( Base ` G ) |
|
| Assertion | nsgid | |- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgid.z | |- B = ( Base ` G ) |
|
| 2 | 1 | subgid | |- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
| 3 | simp1 | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> G e. Grp ) |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | 1 4 | grpcl | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) |
| 6 | simp2 | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> x e. B ) |
|
| 7 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 8 | 1 7 | grpsubcl | |- ( ( G e. Grp /\ ( x ( +g ` G ) y ) e. B /\ x e. B ) -> ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. B ) |
| 9 | 3 5 6 8 | syl3anc | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. B ) |
| 10 | 9 | 3expb | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. B ) |
| 11 | 10 | ralrimivva | |- ( G e. Grp -> A. x e. B A. y e. B ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. B ) |
| 12 | 1 4 7 | isnsg3 | |- ( B e. ( NrmSGrp ` G ) <-> ( B e. ( SubGrp ` G ) /\ A. x e. B A. y e. B ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. B ) ) |
| 13 | 2 11 12 | sylanbrc | |- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |