This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero rising factorial at natural N . (Contributed by Scott Fenton, 17-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0risefac | |- ( N e. NN -> ( 0 RiseFac N ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 3 | risefallfac | |- ( ( 0 e. CC /\ N e. NN0 ) -> ( 0 RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) ) |
|
| 4 | 1 2 3 | sylancr | |- ( N e. NN -> ( 0 RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) ) |
| 5 | neg0 | |- -u 0 = 0 |
|
| 6 | 5 | oveq1i | |- ( -u 0 FallFac N ) = ( 0 FallFac N ) |
| 7 | 0fallfac | |- ( N e. NN -> ( 0 FallFac N ) = 0 ) |
|
| 8 | 6 7 | eqtrid | |- ( N e. NN -> ( -u 0 FallFac N ) = 0 ) |
| 9 | 8 | oveq2d | |- ( N e. NN -> ( ( -u 1 ^ N ) x. ( -u 0 FallFac N ) ) = ( ( -u 1 ^ N ) x. 0 ) ) |
| 10 | neg1cn | |- -u 1 e. CC |
|
| 11 | expcl | |- ( ( -u 1 e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
|
| 12 | 10 2 11 | sylancr | |- ( N e. NN -> ( -u 1 ^ N ) e. CC ) |
| 13 | 12 | mul01d | |- ( N e. NN -> ( ( -u 1 ^ N ) x. 0 ) = 0 ) |
| 14 | 4 9 13 | 3eqtrd | |- ( N e. NN -> ( 0 RiseFac N ) = 0 ) |