This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero falling factorial at natural N . (Contributed by Scott Fenton, 17-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0fallfac | ⊢ ( 𝑁 ∈ ℕ → ( 0 FallFac 𝑁 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 3 | fallfacval | ⊢ ( ( 0 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 0 − 𝑘 ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝑁 ∈ ℕ → ( 0 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 0 − 𝑘 ) ) |
| 5 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 6 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 7 | 5 6 | eleqtrdi | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 8 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℤ ) | |
| 9 | 8 | zcnd | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℂ ) |
| 10 | subcl | ⊢ ( ( 0 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 0 − 𝑘 ) ∈ ℂ ) | |
| 11 | 1 9 10 | sylancr | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 0 − 𝑘 ) ∈ ℂ ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 0 − 𝑘 ) ∈ ℂ ) |
| 13 | oveq2 | ⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = ( 0 − 0 ) ) | |
| 14 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = 0 ) |
| 16 | 7 12 15 | fprod1p | ⊢ ( 𝑁 ∈ ℕ → ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 0 − 𝑘 ) = ( 0 · ∏ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( 0 − 𝑘 ) ) ) |
| 17 | fzfid | ⊢ ( 𝑁 ∈ ℕ → ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 18 | elfzelz | ⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℤ ) | |
| 19 | 18 | zcnd | ⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℂ ) |
| 20 | 1 19 10 | sylancr | ⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) → ( 0 − 𝑘 ) ∈ ℂ ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ) → ( 0 − 𝑘 ) ∈ ℂ ) |
| 22 | 17 21 | fprodcl | ⊢ ( 𝑁 ∈ ℕ → ∏ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( 0 − 𝑘 ) ∈ ℂ ) |
| 23 | 22 | mul02d | ⊢ ( 𝑁 ∈ ℕ → ( 0 · ∏ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( 0 − 𝑘 ) ) = 0 ) |
| 24 | 4 16 23 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( 0 FallFac 𝑁 ) = 0 ) |