This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a subspace is itself. ( spanid analog.) (Contributed by NM, 15-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspid.s | |- S = ( LSubSp ` W ) |
|
| lspid.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspid | |- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspid.s | |- S = ( LSubSp ` W ) |
|
| 2 | lspid.n | |- N = ( LSpan ` W ) |
|
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | 3 1 | lssss | |- ( U e. S -> U C_ ( Base ` W ) ) |
| 5 | 3 1 2 | lspval | |- ( ( W e. LMod /\ U C_ ( Base ` W ) ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |
| 6 | 4 5 | sylan2 | |- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |
| 7 | intmin | |- ( U e. S -> |^| { t e. S | U C_ t } = U ) |
|
| 8 | 7 | adantl | |- ( ( W e. LMod /\ U e. S ) -> |^| { t e. S | U C_ t } = U ) |
| 9 | 6 8 | eqtrd | |- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U ) |