This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvco4i.a | |- (/) = ( F ` (/) ) |
|
| fvco4i.b | |- Fun G |
||
| Assertion | fvco4i | |- ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco4i.a | |- (/) = ( F ` (/) ) |
|
| 2 | fvco4i.b | |- Fun G |
|
| 3 | funfn | |- ( Fun G <-> G Fn dom G ) |
|
| 4 | 2 3 | mpbi | |- G Fn dom G |
| 5 | fvco2 | |- ( ( G Fn dom G /\ X e. dom G ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
|
| 6 | 4 5 | mpan | |- ( X e. dom G -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| 7 | dmcoss | |- dom ( F o. G ) C_ dom G |
|
| 8 | 7 | sseli | |- ( X e. dom ( F o. G ) -> X e. dom G ) |
| 9 | ndmfv | |- ( -. X e. dom ( F o. G ) -> ( ( F o. G ) ` X ) = (/) ) |
|
| 10 | 8 9 | nsyl5 | |- ( -. X e. dom G -> ( ( F o. G ) ` X ) = (/) ) |
| 11 | ndmfv | |- ( -. X e. dom G -> ( G ` X ) = (/) ) |
|
| 12 | 11 | fveq2d | |- ( -. X e. dom G -> ( F ` ( G ` X ) ) = ( F ` (/) ) ) |
| 13 | 1 10 12 | 3eqtr4a | |- ( -. X e. dom G -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| 14 | 6 13 | pm2.61i | |- ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) |