This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of the unique integer such that ph . (Contributed by AV, 1-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zriotaneg.1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | zriotaneg | ⊢ ( ∃! 𝑥 ∈ ℤ 𝜑 → ( ℩ 𝑥 ∈ ℤ 𝜑 ) = - ( ℩ 𝑦 ∈ ℤ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zriotaneg.1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | tru | ⊢ ⊤ | |
| 3 | nfriota1 | ⊢ Ⅎ 𝑦 ( ℩ 𝑦 ∈ ℤ 𝜓 ) | |
| 4 | 3 | nfneg | ⊢ Ⅎ 𝑦 - ( ℩ 𝑦 ∈ ℤ 𝜓 ) |
| 5 | znegcl | ⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) | |
| 6 | 5 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℤ ) → - 𝑦 ∈ ℤ ) |
| 7 | simpr | ⊢ ( ( ⊤ ∧ ( ℩ 𝑦 ∈ ℤ 𝜓 ) ∈ ℤ ) → ( ℩ 𝑦 ∈ ℤ 𝜓 ) ∈ ℤ ) | |
| 8 | 7 | znegcld | ⊢ ( ( ⊤ ∧ ( ℩ 𝑦 ∈ ℤ 𝜓 ) ∈ ℤ ) → - ( ℩ 𝑦 ∈ ℤ 𝜓 ) ∈ ℤ ) |
| 9 | negeq | ⊢ ( 𝑦 = ( ℩ 𝑦 ∈ ℤ 𝜓 ) → - 𝑦 = - ( ℩ 𝑦 ∈ ℤ 𝜓 ) ) | |
| 10 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 11 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 12 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 13 | negcon2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
| 15 | 10 14 | reuhyp | ⊢ ( 𝑥 ∈ ℤ → ∃! 𝑦 ∈ ℤ 𝑥 = - 𝑦 ) |
| 16 | 15 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℤ ) → ∃! 𝑦 ∈ ℤ 𝑥 = - 𝑦 ) |
| 17 | 4 6 8 1 9 16 | riotaxfrd | ⊢ ( ( ⊤ ∧ ∃! 𝑥 ∈ ℤ 𝜑 ) → ( ℩ 𝑥 ∈ ℤ 𝜑 ) = - ( ℩ 𝑦 ∈ ℤ 𝜓 ) ) |
| 18 | 2 17 | mpan | ⊢ ( ∃! 𝑥 ∈ ℤ 𝜑 → ( ℩ 𝑥 ∈ ℤ 𝜑 ) = - ( ℩ 𝑦 ∈ ℤ 𝜓 ) ) |