This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprfinzcl | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssre | ⊢ ℤ ⊆ ℝ | |
| 2 | ltso | ⊢ < Or ℝ | |
| 3 | soss | ⊢ ( ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ ) ) | |
| 4 | 1 2 3 | mp2 | ⊢ < Or ℤ |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → < Or ℤ ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 7 | simp2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) | |
| 8 | simp1 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℤ ) | |
| 9 | fisup2g | ⊢ ( ( < Or ℤ ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ ) ) → ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) | |
| 10 | 5 6 7 8 9 | syl13anc | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) |
| 11 | id | ⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ ) | |
| 12 | 11 1 | sstrdi | ⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℝ ) |
| 14 | ssrexv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) ) |
| 16 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℤ ) | |
| 17 | 16 | zred | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 18 | 17 | ex | ⊢ ( 𝐴 ⊆ ℤ → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 21 | 20 | imp | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 22 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → 𝑟 ∈ ℝ ) | |
| 23 | 21 22 | lenltd | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ≤ 𝑟 ↔ ¬ 𝑟 < 𝑎 ) ) |
| 24 | 23 | bicomd | ⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → ( ¬ 𝑟 < 𝑎 ↔ 𝑎 ≤ 𝑟 ) ) |
| 25 | 24 | ralbidva | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 26 | 25 | biimpd | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 → ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 27 | 26 | adantrd | ⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 28 | 27 | reximdva | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 29 | 15 28 | syld | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 30 | 10 29 | mpd | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) |
| 31 | suprzcl | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) | |
| 32 | 30 31 | syld3an3 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |