This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of the unique integer such that ph . (Contributed by AV, 1-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zriotaneg.1 | |- ( x = -u y -> ( ph <-> ps ) ) |
|
| Assertion | zriotaneg | |- ( E! x e. ZZ ph -> ( iota_ x e. ZZ ph ) = -u ( iota_ y e. ZZ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zriotaneg.1 | |- ( x = -u y -> ( ph <-> ps ) ) |
|
| 2 | tru | |- T. |
|
| 3 | nfriota1 | |- F/_ y ( iota_ y e. ZZ ps ) |
|
| 4 | 3 | nfneg | |- F/_ y -u ( iota_ y e. ZZ ps ) |
| 5 | znegcl | |- ( y e. ZZ -> -u y e. ZZ ) |
|
| 6 | 5 | adantl | |- ( ( T. /\ y e. ZZ ) -> -u y e. ZZ ) |
| 7 | simpr | |- ( ( T. /\ ( iota_ y e. ZZ ps ) e. ZZ ) -> ( iota_ y e. ZZ ps ) e. ZZ ) |
|
| 8 | 7 | znegcld | |- ( ( T. /\ ( iota_ y e. ZZ ps ) e. ZZ ) -> -u ( iota_ y e. ZZ ps ) e. ZZ ) |
| 9 | negeq | |- ( y = ( iota_ y e. ZZ ps ) -> -u y = -u ( iota_ y e. ZZ ps ) ) |
|
| 10 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 11 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 12 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 13 | negcon2 | |- ( ( x e. CC /\ y e. CC ) -> ( x = -u y <-> y = -u x ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x = -u y <-> y = -u x ) ) |
| 15 | 10 14 | reuhyp | |- ( x e. ZZ -> E! y e. ZZ x = -u y ) |
| 16 | 15 | adantl | |- ( ( T. /\ x e. ZZ ) -> E! y e. ZZ x = -u y ) |
| 17 | 4 6 8 1 9 16 | riotaxfrd | |- ( ( T. /\ E! x e. ZZ ph ) -> ( iota_ x e. ZZ ph ) = -u ( iota_ y e. ZZ ps ) ) |
| 18 | 2 17 | mpan | |- ( E! x e. ZZ ph -> ( iota_ x e. ZZ ph ) = -u ( iota_ y e. ZZ ps ) ) |