This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| Assertion | zrhval | ⊢ 𝐿 = ∪ ( ℤring RingHom 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( ℤring RingHom 𝑟 ) = ( ℤring RingHom 𝑅 ) ) | |
| 3 | 2 | unieqd | ⊢ ( 𝑟 = 𝑅 → ∪ ( ℤring RingHom 𝑟 ) = ∪ ( ℤring RingHom 𝑅 ) ) |
| 4 | df-zrh | ⊢ ℤRHom = ( 𝑟 ∈ V ↦ ∪ ( ℤring RingHom 𝑟 ) ) | |
| 5 | ovex | ⊢ ( ℤring RingHom 𝑅 ) ∈ V | |
| 6 | 5 | uniex | ⊢ ∪ ( ℤring RingHom 𝑅 ) ∈ V |
| 7 | 3 4 6 | fvmpt | ⊢ ( 𝑅 ∈ V → ( ℤRHom ‘ 𝑅 ) = ∪ ( ℤring RingHom 𝑅 ) ) |
| 8 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( ℤRHom ‘ 𝑅 ) = ∅ ) | |
| 9 | dfrhm2 | ⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) | |
| 10 | 9 | reldmmpo | ⊢ Rel dom RingHom |
| 11 | 10 | ovprc2 | ⊢ ( ¬ 𝑅 ∈ V → ( ℤring RingHom 𝑅 ) = ∅ ) |
| 12 | 11 | unieqd | ⊢ ( ¬ 𝑅 ∈ V → ∪ ( ℤring RingHom 𝑅 ) = ∪ ∅ ) |
| 13 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 14 | 12 13 | eqtrdi | ⊢ ( ¬ 𝑅 ∈ V → ∪ ( ℤring RingHom 𝑅 ) = ∅ ) |
| 15 | 8 14 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( ℤRHom ‘ 𝑅 ) = ∪ ( ℤring RingHom 𝑅 ) ) |
| 16 | 7 15 | pm2.61i | ⊢ ( ℤRHom ‘ 𝑅 ) = ∪ ( ℤring RingHom 𝑅 ) |
| 17 | 1 16 | eqtri | ⊢ 𝐿 = ∪ ( ℤring RingHom 𝑅 ) |