This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zrhval.l | |- L = ( ZRHom ` R ) |
|
| Assertion | zrhval | |- L = U. ( ZZring RingHom R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | |- L = ( ZRHom ` R ) |
|
| 2 | oveq2 | |- ( r = R -> ( ZZring RingHom r ) = ( ZZring RingHom R ) ) |
|
| 3 | 2 | unieqd | |- ( r = R -> U. ( ZZring RingHom r ) = U. ( ZZring RingHom R ) ) |
| 4 | df-zrh | |- ZRHom = ( r e. _V |-> U. ( ZZring RingHom r ) ) |
|
| 5 | ovex | |- ( ZZring RingHom R ) e. _V |
|
| 6 | 5 | uniex | |- U. ( ZZring RingHom R ) e. _V |
| 7 | 3 4 6 | fvmpt | |- ( R e. _V -> ( ZRHom ` R ) = U. ( ZZring RingHom R ) ) |
| 8 | fvprc | |- ( -. R e. _V -> ( ZRHom ` R ) = (/) ) |
|
| 9 | dfrhm2 | |- RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) |
|
| 10 | 9 | reldmmpo | |- Rel dom RingHom |
| 11 | 10 | ovprc2 | |- ( -. R e. _V -> ( ZZring RingHom R ) = (/) ) |
| 12 | 11 | unieqd | |- ( -. R e. _V -> U. ( ZZring RingHom R ) = U. (/) ) |
| 13 | uni0 | |- U. (/) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( -. R e. _V -> U. ( ZZring RingHom R ) = (/) ) |
| 15 | 8 14 | eqtr4d | |- ( -. R e. _V -> ( ZRHom ` R ) = U. ( ZZring RingHom R ) ) |
| 16 | 7 15 | pm2.61i | |- ( ZRHom ` R ) = U. ( ZZring RingHom R ) |
| 17 | 1 16 | eqtri | |- L = U. ( ZZring RingHom R ) |