This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the unique homomorphism from the integers into a ring. This encodes the usual notation of n = 1r + 1r + ... + 1r for integers (see also df-mulg ). (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zrh | ⊢ ℤRHom = ( 𝑟 ∈ V ↦ ∪ ( ℤring RingHom 𝑟 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czrh | ⊢ ℤRHom | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | czring | ⊢ ℤring | |
| 4 | crh | ⊢ RingHom | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 3 5 4 | co | ⊢ ( ℤring RingHom 𝑟 ) |
| 7 | 6 | cuni | ⊢ ∪ ( ℤring RingHom 𝑟 ) |
| 8 | 1 2 7 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ∪ ( ℤring RingHom 𝑟 ) ) |
| 9 | 0 8 | wceq | ⊢ ℤRHom = ( 𝑟 ∈ V ↦ ∪ ( ℤring RingHom 𝑟 ) ) |