This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgnelbas.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| zrhpsgnelbas.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| zrhpsgnelbas.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
| Assertion | zrhpsgnelbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnelbas.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | zrhpsgnelbas.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 3 | zrhpsgnelbas.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 4 | 1 2 | psgnran | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } ) |
| 6 | elpri | ⊢ ( ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } → ( ( 𝑆 ‘ 𝑄 ) = 1 ∨ ( 𝑆 ‘ 𝑄 ) = - 1 ) ) | |
| 7 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 8 | 3 7 | zrh1 | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 10 | 9 7 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 8 10 | eqeltrd | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 | fveq2 | ⊢ ( ( 𝑆 ‘ 𝑄 ) = 1 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) = ( 𝑌 ‘ 1 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( ( 𝑆 ‘ 𝑄 ) = 1 → ( ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ↔ ( 𝑌 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 15 | 12 14 | imbitrrid | ⊢ ( ( 𝑆 ‘ 𝑄 ) = 1 → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 16 | neg1z | ⊢ - 1 ∈ ℤ | |
| 17 | eqid | ⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) | |
| 18 | 3 17 7 | zrhmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ - 1 ∈ ℤ ) → ( 𝑌 ‘ - 1 ) = ( - 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 19 | 16 18 | mpan2 | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ - 1 ) = ( - 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 20 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 21 | 16 | a1i | ⊢ ( 𝑅 ∈ Ring → - 1 ∈ ℤ ) |
| 22 | 9 17 20 21 10 | mulgcld | ⊢ ( 𝑅 ∈ Ring → ( - 1 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 23 | 19 22 | eqeltrd | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ - 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ - 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 | fveq2 | ⊢ ( ( 𝑆 ‘ 𝑄 ) = - 1 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) = ( 𝑌 ‘ - 1 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( ( 𝑆 ‘ 𝑄 ) = - 1 → ( ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ↔ ( 𝑌 ‘ - 1 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 27 | 24 26 | imbitrrid | ⊢ ( ( 𝑆 ‘ 𝑄 ) = - 1 → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 28 | 15 27 | jaoi | ⊢ ( ( ( 𝑆 ‘ 𝑄 ) = 1 ∨ ( 𝑆 ‘ 𝑄 ) = - 1 ) → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 29 | 6 28 | syl | ⊢ ( ( 𝑆 ‘ 𝑄 ) ∈ { 1 , - 1 } → ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 30 | 5 29 | mpcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) |