This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgnelbas.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| zrhpsgnelbas.s | |- S = ( pmSgn ` N ) |
||
| zrhpsgnelbas.y | |- Y = ( ZRHom ` R ) |
||
| Assertion | zrhpsgnelbas | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnelbas.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | zrhpsgnelbas.s | |- S = ( pmSgn ` N ) |
|
| 3 | zrhpsgnelbas.y | |- Y = ( ZRHom ` R ) |
|
| 4 | 1 2 | psgnran | |- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |
| 5 | 4 | 3adant1 | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |
| 6 | elpri | |- ( ( S ` Q ) e. { 1 , -u 1 } -> ( ( S ` Q ) = 1 \/ ( S ` Q ) = -u 1 ) ) |
|
| 7 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 8 | 3 7 | zrh1 | |- ( R e. Ring -> ( Y ` 1 ) = ( 1r ` R ) ) |
| 9 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 10 | 9 7 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 11 | 8 10 | eqeltrd | |- ( R e. Ring -> ( Y ` 1 ) e. ( Base ` R ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` 1 ) e. ( Base ` R ) ) |
| 13 | fveq2 | |- ( ( S ` Q ) = 1 -> ( Y ` ( S ` Q ) ) = ( Y ` 1 ) ) |
|
| 14 | 13 | eleq1d | |- ( ( S ` Q ) = 1 -> ( ( Y ` ( S ` Q ) ) e. ( Base ` R ) <-> ( Y ` 1 ) e. ( Base ` R ) ) ) |
| 15 | 12 14 | imbitrrid | |- ( ( S ` Q ) = 1 -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 16 | neg1z | |- -u 1 e. ZZ |
|
| 17 | eqid | |- ( .g ` R ) = ( .g ` R ) |
|
| 18 | 3 17 7 | zrhmulg | |- ( ( R e. Ring /\ -u 1 e. ZZ ) -> ( Y ` -u 1 ) = ( -u 1 ( .g ` R ) ( 1r ` R ) ) ) |
| 19 | 16 18 | mpan2 | |- ( R e. Ring -> ( Y ` -u 1 ) = ( -u 1 ( .g ` R ) ( 1r ` R ) ) ) |
| 20 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 21 | 16 | a1i | |- ( R e. Ring -> -u 1 e. ZZ ) |
| 22 | 9 17 20 21 10 | mulgcld | |- ( R e. Ring -> ( -u 1 ( .g ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
| 23 | 19 22 | eqeltrd | |- ( R e. Ring -> ( Y ` -u 1 ) e. ( Base ` R ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` -u 1 ) e. ( Base ` R ) ) |
| 25 | fveq2 | |- ( ( S ` Q ) = -u 1 -> ( Y ` ( S ` Q ) ) = ( Y ` -u 1 ) ) |
|
| 26 | 25 | eleq1d | |- ( ( S ` Q ) = -u 1 -> ( ( Y ` ( S ` Q ) ) e. ( Base ` R ) <-> ( Y ` -u 1 ) e. ( Base ` R ) ) ) |
| 27 | 24 26 | imbitrrid | |- ( ( S ` Q ) = -u 1 -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 28 | 15 27 | jaoi | |- ( ( ( S ` Q ) = 1 \/ ( S ` Q ) = -u 1 ) -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 29 | 6 28 | syl | |- ( ( S ` Q ) e. { 1 , -u 1 } -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
| 30 | 5 29 | mpcom | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) |