This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| zrhpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| zrhpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| zrhpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | zrhpropd | ⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | zrhpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | zrhpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | zrhpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ℤring ) = ( Base ‘ ℤring ) ) | |
| 6 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ℤring ) ∧ 𝑦 ∈ ( Base ‘ ℤring ) ) ) → ( 𝑥 ( +g ‘ ℤring ) 𝑦 ) = ( 𝑥 ( +g ‘ ℤring ) 𝑦 ) ) | |
| 7 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ℤring ) ∧ 𝑦 ∈ ( Base ‘ ℤring ) ) ) → ( 𝑥 ( .r ‘ ℤring ) 𝑦 ) = ( 𝑥 ( .r ‘ ℤring ) 𝑦 ) ) | |
| 8 | 5 1 5 2 6 3 7 4 | rhmpropd | ⊢ ( 𝜑 → ( ℤring RingHom 𝐾 ) = ( ℤring RingHom 𝐿 ) ) |
| 9 | 8 | unieqd | ⊢ ( 𝜑 → ∪ ( ℤring RingHom 𝐾 ) = ∪ ( ℤring RingHom 𝐿 ) ) |
| 10 | eqid | ⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) | |
| 11 | 10 | zrhval | ⊢ ( ℤRHom ‘ 𝐾 ) = ∪ ( ℤring RingHom 𝐾 ) |
| 12 | eqid | ⊢ ( ℤRHom ‘ 𝐿 ) = ( ℤRHom ‘ 𝐿 ) | |
| 13 | 12 | zrhval | ⊢ ( ℤRHom ‘ 𝐿 ) = ∪ ( ℤring RingHom 𝐿 ) |
| 14 | 9 11 13 | 3eqtr4g | ⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐿 ) ) |