This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmval.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| zlmval.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | zlmval | ⊢ ( 𝐺 ∈ 𝑉 → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmval.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | zlmval.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | elex | ⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) | |
| 4 | oveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) = ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = ( .g ‘ 𝐺 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = · ) |
| 7 | 6 | opeq2d | ⊢ ( 𝑔 = 𝐺 → 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) |
| 8 | 4 7 | oveq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 ) = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
| 9 | df-zlm | ⊢ ℤMod = ( 𝑔 ∈ V ↦ ( ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 ) ) | |
| 10 | ovex | ⊢ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐺 ∈ V → ( ℤMod ‘ 𝐺 ) = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
| 12 | 3 11 | syl | ⊢ ( 𝐺 ∈ 𝑉 → ( ℤMod ‘ 𝐺 ) = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
| 13 | 1 12 | eqtrid | ⊢ ( 𝐺 ∈ 𝑉 → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |