This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| zrhpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| zrhpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| zrhpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | zrhpropd | |- ( ph -> ( ZRHom ` K ) = ( ZRHom ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | zrhpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | zrhpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | zrhpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | eqidd | |- ( ph -> ( Base ` ZZring ) = ( Base ` ZZring ) ) |
|
| 6 | eqidd | |- ( ( ph /\ ( x e. ( Base ` ZZring ) /\ y e. ( Base ` ZZring ) ) ) -> ( x ( +g ` ZZring ) y ) = ( x ( +g ` ZZring ) y ) ) |
|
| 7 | eqidd | |- ( ( ph /\ ( x e. ( Base ` ZZring ) /\ y e. ( Base ` ZZring ) ) ) -> ( x ( .r ` ZZring ) y ) = ( x ( .r ` ZZring ) y ) ) |
|
| 8 | 5 1 5 2 6 3 7 4 | rhmpropd | |- ( ph -> ( ZZring RingHom K ) = ( ZZring RingHom L ) ) |
| 9 | 8 | unieqd | |- ( ph -> U. ( ZZring RingHom K ) = U. ( ZZring RingHom L ) ) |
| 10 | eqid | |- ( ZRHom ` K ) = ( ZRHom ` K ) |
|
| 11 | 10 | zrhval | |- ( ZRHom ` K ) = U. ( ZZring RingHom K ) |
| 12 | eqid | |- ( ZRHom ` L ) = ( ZRHom ` L ) |
|
| 13 | 12 | zrhval | |- ( ZRHom ` L ) = U. ( ZZring RingHom L ) |
| 14 | 9 11 13 | 3eqtr4g | |- ( ph -> ( ZRHom ` K ) = ( ZRHom ` L ) ) |