This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zprodn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| zprodn0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| zprodn0.3 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| zprodn0.4 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | ||
| zprodn0.5 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | ||
| zprodn0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | ||
| zprodn0.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | zprodn0 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zprodn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | zprodn0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | zprodn0.3 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 4 | zprodn0.4 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | |
| 5 | zprodn0.5 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | |
| 6 | zprodn0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 7 | zprodn0.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 8 | 1 2 4 3 | ntrivcvgn0 | ⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∃ 𝑥 ( 𝑥 ≠ 0 ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
| 9 | 1 2 8 5 6 7 | zprod | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
| 10 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 11 | ffun | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) | |
| 12 | 10 11 | ax-mp | ⊢ Fun ⇝ |
| 13 | funbrfv | ⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) ) | |
| 14 | 12 4 13 | mpsyl | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) |
| 15 | 9 14 | eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 𝑋 ) |