This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ntrivcvgn0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ntrivcvgn0.3 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | ||
| ntrivcvgn0.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| Assertion | ntrivcvgn0 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ntrivcvgn0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ntrivcvgn0.3 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | |
| 4 | ntrivcvgn0.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 5 | 2 | uzidd | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 | 5 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 7 | climrel | ⊢ Rel ⇝ | |
| 8 | 7 | brrelex2i | ⊢ ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → 𝑋 ∈ V ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 10 | 4 3 | jca | ⊢ ( 𝜑 → ( 𝑋 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) ) |
| 11 | neeq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ≠ 0 ↔ 𝑋 ≠ 0 ) ) | |
| 12 | breq2 | ⊢ ( 𝑦 = 𝑋 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) ) | |
| 13 | 11 12 | anbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝑋 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) ) ) |
| 14 | 9 10 13 | spcedv | ⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| 15 | seqeq1 | ⊢ ( 𝑛 = 𝑀 → seq 𝑛 ( · , 𝐹 ) = seq 𝑀 ( · , 𝐹 ) ) | |
| 16 | 15 | breq1d | ⊢ ( 𝑛 = 𝑀 → ( seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| 17 | 16 | anbi2d | ⊢ ( 𝑛 = 𝑀 → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) ) |
| 18 | 17 | exbidv | ⊢ ( 𝑛 = 𝑀 → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) ) |
| 19 | 18 | rspcev | ⊢ ( ( 𝑀 ∈ 𝑍 ∧ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| 20 | 6 14 19 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |