This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znnn0nn | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) | |
| 2 | 1 | znegcld | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℤ ) |
| 3 | elznn | ⊢ ( - 𝑁 ∈ ℤ ↔ ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) ) | |
| 4 | 2 3 | sylib | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) ) |
| 5 | 4 | simprd | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 8 | 7 | negnegd | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - - 𝑁 = 𝑁 ) |
| 9 | simpr | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ¬ 𝑁 ∈ ℕ0 ) | |
| 10 | 8 9 | eqneltrd | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ¬ - - 𝑁 ∈ ℕ0 ) |
| 11 | pm2.24 | ⊢ ( - - 𝑁 ∈ ℕ0 → ( ¬ - - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℕ ) ) | |
| 12 | 11 | jao1i | ⊢ ( ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) → ( ¬ - - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℕ ) ) |
| 13 | 5 10 12 | sylc | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ ) |